Capitolo 6

Il determinante

Soluzioni Esercizi

Esercizio 6.6.1. Calcolare il determinante delle seguenti matrici:

$$\begin{pmatrix} 15 & 6 \\ 20 & 8 \end{pmatrix}; \quad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 11 & 15 \end{pmatrix}.$$

Soluzione esercizio:

$$\det\begin{pmatrix} 15 & 6 \\ 20 & 8 \end{pmatrix} = \det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 11 & 15 \end{pmatrix} = 0.$$

Esercizio 6.6.2. Calcolare il determinante delle seguenti matrici:

$$\begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}; \quad \begin{pmatrix} 3 & 1 & 5 \\ 0 & 0 & 2 \\ 1 & 3 & 1 \end{pmatrix}$$

Soluzione esercizio:

$$\det\begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix} = -4; \quad \det\begin{pmatrix} 3 & 1 & 5 \\ 0 & 0 & 2 \\ 1 & 3 & 1 \end{pmatrix} = -16$$

Esercizio 6.6.3. Calcolare il determinante delle seguenti matrici:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}; \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 1 & 0 \end{pmatrix}.$$

Soluzione Esercizio: Vedi libro.

Esercizio 6.6.4. Calcolare il determinante delle matrici C = AB e D = BA dove $A = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$.

Soluzione Esercizio:
$$C = AB = \begin{pmatrix} 2 & 4 & 2 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}; \quad D = BA = (4).$$

Quindi $\det C = 0$ e $\det D = 4$.

Esercizio 6.6.5. Calcolare il determinante delle matrici C = AB e D = BA dove $A = \begin{pmatrix} 0 & 2 \\ -1 & 1 \\ 1 & 0 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \end{pmatrix}$.

Soluzione Esercizio:

Solution Esercizio:
$$C = \begin{pmatrix} 4 & 2 & -2 \\ 1 & -1 & -2 \\ 1 & 2 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 4 \\ -2 & 5 \end{pmatrix} \text{ e det } C = 0, \text{ det } D = 3.$$

Esercizio 6.6.6. Calcolare il determinante delle seguenti matrici:

$$\begin{pmatrix} -2 & -2 & -3 \\ 14 & 2 & 7 \\ 0 & 1 & 10 \end{pmatrix}; \quad \begin{pmatrix} 11 & 0 & 12 \\ 0 & -1 & 32 \\ 0 & 4 & 0 \end{pmatrix}.$$

Soluzione esercizio:

$$\det \begin{pmatrix} -2 & -2 & -3 \\ 14 & 2 & 7 \\ 0 & 1 & 10 \end{pmatrix} = 212; \quad \det \begin{pmatrix} 11 & 0 & 12 \\ 0 & -1 & 32 \\ 0 & 4 & 0 \end{pmatrix} = -1408.$$

Esercizio 6.6.7. Utilizzando il determinante, valutare il rango delle seguenti matrici al variare del parametro $k \in \mathbb{R}$.

$$\begin{pmatrix} k^2 & 2k \\ k & k+1 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 \\ 2 & k & 6 \\ 3 & 6 & k+5 \end{pmatrix}.$$

Soluzione Esercizio:

$$\det\begin{pmatrix} k^2 & 2k \\ k & k+1 \end{pmatrix} = k^2(k-1)$$

quindi se $k \neq 0,1$ il rango di questa matrice è 2, altrimenti è 1 in quanto se fosse 0 dovrebbe essere la matrice nulla, ma non lo è in nessuno dei due casi.

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 2 & k & 6 \\ 3 & 6 & k+5 \end{pmatrix} = k^2 - 8k + 16 = (k-4)^2$$

quindi per $k \neq 4$ questa matrice ha rango 3. Per k = 4 la matrice ha rango 1, infatti si vede semplicemente che le ultime due righe sono entrambe multiple della prima.

Esercizio 6.6.8. Utilizzando il determinante, valutare il rango delle seguenti matrici al variare del parametro $k \in \mathbb{R}$.

$$\begin{pmatrix} k & 3 \\ 0 & k^2 \end{pmatrix}; \begin{pmatrix} k & 0 & -1 \\ 2-k & k & 1 \\ 0 & -3 & 1 \end{pmatrix}.$$

Soluzione Esercizio: Vedi libro.

Esercizio 6.6.9. Utilizzando il determinante, valutare il rango delle seguenti matrici al variare del parametro $k \in \mathbb{R}$.

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & k & 1 \\ 2 & 6 & 3 \end{pmatrix}; \begin{pmatrix} 1 & 1 & 1 \\ 2 & k & k \\ 2k & 4 & k+2 \end{pmatrix}.$$

Soluzione esercizio:

$$\det \begin{pmatrix} 1 & 2 & 1 \\ 0 & k & 1 \\ 2 & 6 & 3 \end{pmatrix} = k - 2$$

quindi per $k \neq 2$ la matrice ha rango 3, mentre per k = 2 ha rango 2.

$$\det\begin{pmatrix} 1 & 1 & 1 \\ 2 & k & k \\ 2k & 4 & k+2 \end{pmatrix} = k^2 - 4k + 4 = (k-2)^2,$$

quindi per $k \neq 2$ la matrice ha rango 3, mentre per k = 2 ha rango 1.

Esercizio 6.6.10. Utilizzando il determinante, valutare il rango delle seguenti matrici al variare del parametro $k \in \mathbb{R}$.

$$\begin{pmatrix} k-1 & 2 & 3 \\ 0 & k^2-1 & k+1 \\ 0 & 0 & 1+k \end{pmatrix}; \begin{pmatrix} 3-k & 2 & 3 & 21 \\ 0 & k+4 & 6 & 13 \\ 0 & 0 & k-5 & 1 \\ 0 & 0 & 0 & k^2 \end{pmatrix}.$$

Soluzione Esercizio:

$$\det \begin{pmatrix} k-1 & 2 & 3\\ 0 & k^2-1 & k+1\\ 0 & 0 & 1+k \end{pmatrix} = (k-1)^2(k+1)^2$$

quindi per $k \neq \pm 1$ la matrice ha rango 3. Si verifica invece che per k=1 la matrice ha rango 2 mentre per k=-1 la matrice ha rango 1.

$$\det \begin{pmatrix} 3-k & 2 & 3 & 21 \\ 0 & k+4 & 6 & 13 \\ 0 & 0 & k-5 & 1 \\ 0 & 0 & 0 & k^2 \end{pmatrix} = (3-k)(k+4)(k-5)k^2.$$

quindi per $k \neq 3, -4, 5, 0$ la matrice ha rango 4. Si verifica invece che per k = 3, -4, 5, 0 la matrice ha rango 3.

Esercizio 6.6.11. Utilizzando il determinante, valutare il rango delle seguenti matrici al variare del parametro $k \in \mathbb{R}$.

$$\begin{pmatrix} -1 & 0 & 1 \\ 0 & -k & 3 \\ 0 & 0 & 3 \end{pmatrix}; \begin{pmatrix} 2 & k & 3 \\ 0 & -k & 3 \\ 0 & 2k & k-3 \end{pmatrix}.$$

Soluzione esercizio:

$$\det \begin{pmatrix} -1 & 0 & 1\\ 0 & -k & 3\\ 0 & 0 & 3 \end{pmatrix} = 3k$$

quindi per $k \neq 0$ la matrice ha rango 3, per k = 0 ha invece rango 2.

$$\det \begin{pmatrix} 2 & k & 3 \\ 0 & -k & 3 \\ 0 & 2k & k-3 \end{pmatrix} = -2k^2 - 6k = -2k(k+3)$$

quindi per $k \neq 0, -3$ la matrice ha rango massimo, altrimenti ha rango 2.

Esercizio 6.6.12. Utilizzando il determinante, valutare il rango delle seguenti matrici al variare del parametro $k \in \mathbb{R}$.

$$\begin{pmatrix} k & 0 & 1 \\ 1 & 3 & 0 \\ k^2 & k & 3k \end{pmatrix}; \begin{pmatrix} 1+k & 0 & 0 & 0 \\ 1 & k-2 & 0 & 0 \\ 2 & 3 & k+3 & 0 \\ 1 & 4 & 1 & k^2 \end{pmatrix}.$$

Soluzione esercizio:

$$\det \begin{pmatrix} k & 0 & 1 \\ 1 & 3 & 0 \\ k^2 & k & 3k \end{pmatrix} = 6k^2 + k = k(6k+1).$$

Quindi per $k \neq 0, -1/6$ la matrice ha rango 3, altrimenti si verifica che ha rango 2.

$$\det\begin{pmatrix} 1+k & 0 & 0 & 0\\ 1 & k-2 & 0 & 0\\ 2 & 3 & k+3 & 0\\ 1 & 4 & 1 & k^2 \end{pmatrix} = (1+k)(k-2)(k+3)k^2.$$

Quindi per $k \neq -1, 2, 3, 0$ la matrice ha rango 4, altrimenti ha rango 3.

Esercizio 6.6.13. Stabilire se esistono valori reali di k in per i quali le terne seguenti sono linearmente dipendenti. In caso affermativo trovare i valori di k per i quali si ha la dipendenza lineare:

1.
$$(2,1,2k+1)$$
, $(1,2,2)$, $(0,4,1)$;

2.
$$(1,1,3,1), (k,k,3k,2), (1,1,0,0).$$

Soluzione esercizio:

Esercizio 6.6.14. Risolvere i seguenti sistemi utilizzando la regola di Cramer (se possibile):

$$\begin{cases} 5x - 2y = 3 \\ 2x + 3y = 5 \end{cases}; \begin{cases} x + y + z = 4 \\ x + 2y + 3z = 9 \\ x - y + z = 2 \end{cases}.$$

Soluzione esercizio:

$$\begin{cases} 5x - 2y = 3 \\ 2x + 3y = 5 \end{cases}.$$

La matrice dei coefficienti $A=\left(\begin{array}{cc}5&-2\\2&3\end{array}\right)$ ha rango
19 quindi non nullo, perciò Cramer si può applicare:

$$x = \det \begin{pmatrix} 3 & -2 \\ 5 & 3 \end{pmatrix} / 19 = 1, \ y = \det \begin{pmatrix} 5 & 3 \\ 2 & 5 \end{pmatrix} / 19 = 1.$$

$$\begin{cases} x + y + z = 4 \\ x + 2y + 3z = 9 \\ x - y + z = 2 \end{cases}$$

Il determinante della matrice dei coefficienti è 4 quindi Cramer è applicabile.

$$x = \det \begin{pmatrix} 4 & 1 & 1 \\ 9 & 2 & 3 \\ 2 & -1 & 1 \end{pmatrix} / 4 = 1$$
$$y = \det \begin{pmatrix} 1 & 4 & 1 \\ 1 & 9 & 3 \\ 1 & 2 & 1 \end{pmatrix} / 4 = 1$$
$$z = \det \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 9 \\ 1 & -1 & 2 \end{pmatrix} / 4 = 2.$$

Esercizio 6.6.15. Risolvere i seguenti sistemi utilizzando la regola di Cramer (se possibile):

$$\begin{cases} x-y=2 \\ 3x+5y=0 \end{cases}; \quad \begin{cases} 2x+3y-z=1 \\ x-2y+7z=-1 \\ 2x+2y-z=2 \end{cases}.$$

Soluzione esercizio:

$$\begin{cases} x - y = 2\\ 3x + 5y = 0 \end{cases}$$

La matrice dei coefficienti è

$$A = \left(\begin{array}{cc} 1 & -1 \\ 3 & 5 \end{array}\right)$$

il cui determinante vale $8 \neq 0$ perciò Cramer si può applicare.

$$x = \det \begin{pmatrix} 2 & -1 \\ 0 & 5 \end{pmatrix} / 8 = 5/4; \ y = \det \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} / 8 = -3/4.$$

$$\begin{cases} 2x + 3y - z = 1 \\ x - 2y + 7z = -1 \\ 2x + 2y - z = 2 \end{cases}.$$

La matrice dei coefficienti è

$$A = \left(\begin{array}{ccc} 2 & 3 & -1\\ 1 & -2 & 7\\ 2 & 2 & -1 \end{array}\right)$$

il cui determinante vale $15 \neq 0$ perciò Cramer si può applicare.

$$x = \det \begin{pmatrix} 1 & 3 & -1 \\ -1 & -2 & 7 \\ 2 & 2 & -1 \end{pmatrix} / 15 = 5/3;$$

$$y = \det \begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 7 \\ 2 & 2 & -1 \end{pmatrix} / 15 = -1;$$

$$z = \det \begin{pmatrix} 2 & 3 & 1 \\ 1 & -2 & -1 \\ 2 & 2 & -2 \end{pmatrix} / 15 = -2/3.$$

Esercizio 6.6.16. In \mathbb{R}^4 si considerino i seguenti vettori $\mathbf{v}_1 = (1,0,2,-2)$, $\mathbf{v}_2 = (3,-2,-2,0)$, $\mathbf{v}_3 = (2,0,1,5)$. Stabilire, utilizzando il determinante, se sono linearmente dipendenti.

Soluzione esercizio: Consideriamo la matrice

$$\left(\begin{array}{cccc}
1 & 0 & 2 & -2 \\
3 & -2 & -2 & 0 \\
2 & 0 & 1 & 5
\end{array}\right).$$

Di questa matrice NON si può calcolare il determinante in quanto ha 3 righe e 4 colonne, ma se ne prendiamo le prime tre colonne allora abbiamo una matrice 3×3 di rango massimo. Quindi i tre vettori sono linearmente indipendenti.

Esercizio 6.6.17. Stabilire il massimo numero di vettori indipendenti tra i seguenti vettori di \mathbb{R}^{20} :

$$\begin{aligned} \mathbf{v}_1 &= (2,1,3,6,0,0,-2,0,-9,7,11,9,0,0,0,0,-1,23,3,1), \\ \mathbf{v}_2 &= (0,10,-2,1,2,-3,11,10,-2,4,1,13,10,-2,-1,2,-3,0,0,0), \\ \mathbf{v}_3 &= (-2,0,0,0,0,0,1,1,4,3,1,-7,0,2,0,-1,2,1,1,0), \\ \mathbf{v}_4 &= (1,2,0,0,0,0,-2,0,0,3,1,4,0,1,0,0,1,0,2,-1). \end{aligned}$$

Soluzione esercizio: I 4 vettori dati sono linearmente indipendenti, per vederlo basta considerare la matrice formata mettendoli in riga e considerando le prime 4 colonne: esse formano una matrice di determinante non nullo.

Esercizio 6.6.18. Stabilire per quali valori del parametro $k \in \mathbb{R}$ i seguenti vettori di \mathbb{R}^3 sono linearmente indipendenti: $\mathbf{v}_1 = (k, 2, 1)$, $\mathbf{v}_2 = (0, 1, k)$, $\mathbf{v}_3 = (1, 3, 2)$.

Soluzione Esercizio: Vedi libro.

Esercizio 6.6.19. Stabilire per quali valori del parametro $k \in \mathbb{R}$ i seguenti vettori di \mathbb{R}^3 sono linearmente indipendenti: $\mathbf{v}_1 = (0, 1, 3)$, $\mathbf{v}_2 = (k, 2, -k)$, $\mathbf{v}_3 = (-3, -1, 2k)$.

Soluzione esercizio: Il determinante della matrice formata mettendo in riga i tre vettori dati è $-2k^2 + 18 = 2(3 - k)(3 + k)$. Quindi i tre vettori dati sono linearmente indipendenti per ogni $k \neq \pm 3$.

Esercizio 6.6.20. Stabilire se le seguenti matrici sono invertibili e in caso affermativo calcolarne l'inversa:

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array}\right), \left(\begin{array}{ccc} -1 & 2 & 0 \\ -2 & 0 & 4 \\ 7 & 1 & 2 \end{array}\right).$$

Soluzione esercizio:

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array}\right).$$

La matrice data ha determinante -6 quindi è invertibile e la sua inversa è $\begin{pmatrix} 0 & 1/3 \\ 1/2 & -1/6 \end{pmatrix}$.

$$\left(\begin{array}{rrr} -1 & 2 & 0 \\ -2 & 0 & 4 \\ 7 & 1 & 2 \end{array}\right).$$

La matrice data ha determinante non nullo, quindi è invertibile e la sua inversa è :

$$\begin{pmatrix} -1/17 & -1/17 & 2/17 \\ 8/17 & -1/34 & 1/17 \\ -1/34 & 15/68 & 1/17 \end{pmatrix}.$$

Esercizio 6.6.21. Stabilire se le seguenti matrici sono invertibili e in caso affermativo calcolarne l'inversa:

$$\left(\begin{array}{cc} 3 & -1 \\ 1 & 2 \end{array}\right), \left(\begin{array}{ccc} 2 & 0 & 4 \\ 3 & 1 & 2 \\ -3 & -2 & 12 \end{array}\right).$$

Soluzione esercizio:

$$\left(\begin{array}{cc} 3 & -1 \\ 1 & 2 \end{array}\right)$$

La matrice data è invertibile con inversa: $\begin{pmatrix} 2/7 & 1/7 \\ -1/7 & 3/7 \end{pmatrix}$.

$$\left(\begin{array}{ccc} 2 & 0 & 4 \\ 3 & 1 & 2 \\ -3 & -2 & 12 \end{array}\right).$$

La matrice data è invertibile con inversa:

$$\left(\begin{array}{ccc}
4/5 & -2/5 & -1/5 \\
-21/10 & 9/5 & 2/5 \\
-3/20 & 1/5 & 1/10
\end{array}\right).$$

Esercizio 6.6.22. Stabilire per quali valori di $k \in \mathbb{R}$ le seguenti matrici sono invertibili:

$$\left(\begin{array}{cc} k & 2 \\ 2 & k \end{array}\right), \left(\begin{array}{cc} -k & 0 & 0 \\ k & k & 0 \\ 1 & k & 1 \end{array}\right).$$

Soluzione Esercizio: Vedi libro.

Esercizio 6.6.23. Stabilire per quali valori di $k \in \mathbb{R}$ se le seguenti matrici sono invertibili:

$$\left(\begin{array}{cc}2&k\\k&8\end{array}\right),\,\left(\begin{array}{ccc}1&-k&2+k\\0&k&0\\3&-k&2\end{array}\right).$$

Soluzione esercizio:

$$\begin{pmatrix} 2 & k \\ k & 8 \end{pmatrix}$$

Il determinante di questa matrice vale 16 – k^2 quindi essa è invertibile per ogni $k \neq \pm 4.$

$$\left(\begin{array}{ccc} 1 & -k & 2+k \\ 0 & k & 0 \\ 3 & -k & 2 \end{array}\right).$$

Il determinante di questa matrice vale -k(3k+4) quindi essa è invertibile per ogni $k \neq 0, -4/3$.

Esercizio 6.6.24. Stabilire per quali valori di $k \in \mathbb{R}$ se le seguenti matrici sono invertibili:

$$\left(\begin{array}{cccc} k+1 & 0 & 0 & 0 \\ 0 & k & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 1 & 3 \end{array}\right); \left(\begin{array}{cccc} 0 & 0 & 0 & k \\ k & 0 & 0 & 0 \\ 1 & -3 & 1 & 2 \\ 1 & -1 & 0 & 0 \end{array}\right).$$

Soluzione esercizio

$$\left(\begin{array}{ccccc}
k+1 & 0 & 0 & 0 \\
0 & k & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 2 & 1 & 3
\end{array}\right)$$

Il determinante di questa matrice è (k+1)(k-1/5) quindi essa è invertibile per ogni $k \neq -1, 1/5$.

$$\left(\begin{array}{cccc} 0 & 0 & 0 & k \\ k & 0 & 0 & 0 \\ 1 & -3 & 1 & 2 \\ 1 & -1 & 0 & 0 \end{array}\right).$$

Il determinante di questa matrice è $-k^2$ quindi essa è invertibile per ogni $k \neq 0$.

Esercizio 6.6.25. Stabilire per quali valori di $k \in \mathbb{R}$ se le seguenti matrici sono invertibili:

$$\left(\begin{array}{ccc} 1 & 2k-3 & 0 \\ 1 & k+2 & 0 \\ k^2 & 0 & 4-k \end{array}\right); \left(\begin{array}{ccc} 3 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & k \end{array}\right).$$

Soluzione esercizio:

$$\left(\begin{array}{ccc}
1 & 2k - 3 & 0 \\
1 & k + 2 & 0 \\
k^2 & 0 & 4 - k
\end{array}\right)$$

Il determinante di questa matrice è (k-4)(k-5) quindi essa è invertibile per ogni $k \neq 4, 5$.

$$\left(\begin{array}{ccccc} 3 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & k \end{array}\right).$$

Il determinante di questa matrice è -2k+2 quindi essa è invertibile per ogni $k \neq 1$.

Esercizio 6.6.26. Calcolare il rango delle seguenti matrici tramite l'utilizzo dei minori:

$$\left(\begin{array}{ccccc}
0 & 2 & 1 & 0 & 5 \\
2 & -2 & 4 & 1 & 0 \\
1 & 2 & -1 & 0 & 0
\end{array}\right), \left(\begin{array}{ccccc}
1 & 2 & 2 & 0 \\
-2 & 2 & 3 & 10 \\
1 & 7 & -3 & 1
\end{array}\right).$$

Soluzione esercizio:

$$\left(\begin{array}{cccccc}
0 & 2 & 1 & 0 & 5 \\
2 & -2 & 4 & 1 & 0 \\
1 & 2 & -1 & 0 & 0
\end{array}\right)$$

Osserviamo che questa matrice può avere al massimo rango 3 in quanto ha 3 righe e 5 colonne e 3 < 5. Il minore di ordine 3 costituito dalle ultime tre colonne è non nullo. Possiamo quindi affermare che la matrice ha effettivamente rango 3.

$$\left(\begin{array}{cccc}
1 & 2 & 2 & 0 \\
-2 & 2 & 3 & 10 \\
1 & 7 & -3 & 1
\end{array}\right).$$

Osserviamo che questa matrice può avere al massimo rango 3 in quanto ha 3 righe e 4 colonne e 3 < 4. Il minore di ordine 3 costituito dalle prime tre colonne è non nullo. Possiamo quindi affermare che la matrice ha effettivamente rango 3.

Esercizio 6.6.27. Calcolare il rango delle seguenti matrici tramite l'utilizzo dei minori:

$$\left(\begin{array}{ccccc} 4 & -2 & 3 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 4 & 0 & 6 \end{array}\right), \left(\begin{array}{ccccc} 0 & 7 & 0 & 1 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 3 & 20 \end{array}\right).$$

Soluzione esercizio:

$$\left(\begin{array}{cccccc}
4 & -2 & 3 & 0 & 0 \\
0 & 0 & 7 & 0 & 0 \\
0 & 0 & 4 & 0 & 6
\end{array}\right)$$

Osserviamo che questa matrice può avere al massimo rango 3 in quanto ha 3 righe e 5 colonne e 3 < 5. Il minore di ordine 3 costituito dalla prima, la terza e la quinta colonna è non nullo. Possiamo quindi affermare che la matrice ha effettivamente rango 3.

$$\left(\begin{array}{cccc}
0 & 7 & 0 & 1 \\
0 & 0 & -3 & 0 \\
0 & 0 & 3 & 20
\end{array}\right).$$

Osserviamo che questa matrice può avere al massimo rango 3 in quanto ha 3 righe e 4 colonne e 3 < 4. Il minore di ordine 3 costituito dalle ultime tre colonne è non nullo. Possiamo quindi affermare che la matrice ha effettivamente rango 3.

Esercizio 6.6.28. Mostrare che il prodotto di due matrici quadrate invertibili $n \times n$ è ancora una matrice invertibile.

Soluzione esercizio: Siano A, B due matrici quadrate invertibili di ordine n. Essendo invertibili ammetteranno inversa, siano esse rispettivamente A^{-1} e B^{-1} . Consideriamo il prodotto $(B^{-1}A^{-1})(AB)$ e osserviamo che

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1} \cdot Id \cdot B = B^{-1}B = Id,$$

da cui $(AB)^{-1} = B^{-1}A^{-1}$ quindi anche AB è invertibile.

Esercizio 6.6.29. Siano A, B due matrici $n \times n$ tali che r(A) < n. Cosa si può dire su det(AB)?

Soluzione esercizio: Per il teorema di Binet si ha che det(AB) = det(A) det(B). Essendo A di rango non massimo il suo determinante sarà nullo, quindi se inseriamo det(A) = 0 nella formula data dal teorema di Binet otteniamo che anche det(AB) = 0.

Esercizio 6.6.30. Si risolva l'equazione matriciale

$$AX + BX = C^2 + AX - BX$$

dove A,B,Ce Xsono matrici quadrate $n\times n$ assumendo che Ae Bsiano invertibili.

Soluzione esercizio: $X = \frac{1}{2}B^{-1}C^2$.

Esercizio 6.6.31. Sia A una matrice invertibile. Mostrare che

$$\det A^{-1} = 1/(\det A).$$

Soluzione Esercizio: Vedi libro.

Esercizio 6.6.32. Data la matrice $A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 7 \end{pmatrix}$, dire se esiste, e in caso trovarla, una matrice B tale che $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Se tale B esiste, è possibile affermare che A è invertibile?

Soluzione esercizio: Osserviamo innanzitutto che la matrice B deve essere una 3×2 . Sia

$$B = \left(\begin{array}{cc} a & d \\ b & c \\ c & f \end{array}\right).$$

Cosí otteniamo che

$$AB = \left(\begin{array}{cc} -b & -e \\ a+7c & d+7f \end{array} \right).$$

Ora è ovviamente sufficiente prendere a=-7c, b=1, d=1-7f ed e=0 per trovare una matrice B con la proprietà richiesta. Questo però non assicura prova (ed infatti è falso) che A sia invertibile in quanto per esserlo dovrebbe anche succedere che BA=Id ma questo non solo è falso ma $AB=Id_2$ mentre BA è una matrice 3×3 .

Esercizio 6.6.33. * Risolvere, se possibile, col metodo di Cramer (applicato in modo non standard, ma comunque corretto, separando la variabile libera z) il seguente sistema lineare:

$$\begin{cases} x+y=z-3\\ x-3y=z+1 \end{cases}.$$

Soluzione Esercizio: Vedi libro.

Esercizio 6.6.34. Data la matrice

$$A = \left(\begin{array}{ccc} x & y & y \\ y & x & y \\ y & y & x \end{array}\right),$$

calcolare il valore di det A e dire per quali valori di (x, y) A sia invertibile.

Soluzione Esercizio: Il det $A = x^3 - 3xy^2 + y^3$, quindi A sarà invertibile per tutti gli x,y che non annullano det A i quali si trovano facilmente con la formula di risoluzione di polinomi di terzo grado e di cui riportiamo qui una approssimazione. A non è invertible per ognuna delle seguenti scelte di (x,y): (x,y) = (1.532088886237956,1), (-1.879385241571816,1), (0.3472963553338607,1).

Esercizio 6.6.35. Sia $A \in \mathbb{R}^{4,4}$ dire, giustificando la risposta, se sia vero che det $A = \det(-A)$. Porsi lo stesso problema in generale, per $A \in \mathbb{R}^{n,n}$.

Soluzione Esercizio: Sì perché il determinante è lineare rispetto alla moltiplicazione di uno scalare per una riga, quindi se $A \in \mathbb{R}^{4,4}$ allora $\det(-A) = (-1)^4 \det(A) = \det(A)$. In generale se $A \in \mathbb{R}^{n,n}$ allora $\det(-A) = (-1)^n \det(A)$ che è uguale a $\det(A)$ se e solo se n è un numero pari.

Esercizio 6.6.36. Considerare l'applicazione det : $\mathbb{R}^{n,n} \to \mathbb{R}$; ci sono valori di n per cui det sia un'applicazione lineare?

Soluzione Esercizio: Sì, per n=1.

Esercizio 6.6.37. Dimostrare che una matrice 3×3 che contenga sette zeri ha determinante nullo.

Soluzione Esercizio: Una matrice 3×3 che contiene 7 zeri deve necessariamente avere una riga o una colonna nulla, quindi il suo determinate è zero.

Esercizio 6.6.38. Sia
$$A = \begin{pmatrix} 2 & 2 & k \\ 1 & 2 & 0 \\ 0 & 0 & 3k \end{pmatrix}$$
.

- 1. Calcolare il rango di A al variare del parametro reale k.
- Si determini il valore reale di k tale che la matrice A abbia determinante uguale a uno. Per tale valore di k, si calcoli la matrice inversa di A.

Soluzione Esercizio:

- 1. Si vede chiaramente che le prime due righe sono linearmente indipendenti per ogni valore di k, quindi il rango della matrice è sempre almeno 2. Il rango di A sarà esattamente 2 se e solo se det(A) = 0. Ora det(A) = 6k quindi il rango di A è 2 solo se k = 0, in tutti gli altri casi il rango di A è 3.
- 2. Come appena calcolato $\det(A) = 6k$, quindi $\det(A) = 1$ solo se k = 1/6. Ora $A^{-1} = \begin{pmatrix} 1 & -1 & -1/3 \\ -1/2 & 1 & 1/6 \\ 0 & 0 & 2 \end{pmatrix}$.

Esercizio 6.6.39. [Per chi conosce già il prodotto vettoriale] Calcolare con la regola del determinante e disegnare nello spazio il prodotto vettoriale dei due seguenti vettori: $\mathbf{v}_1 = (1, 1, 2), \mathbf{v}_2 = (0, 0, 2).$

Soluzione Esercizio: Il prodotto vettoriale tra \mathbf{v}_1 e \mathbf{v}_2 è (2, -2, 0). Essi sono rappresentati in Figura 6.1 coi colori nero, blu e rosso rispettivamente.

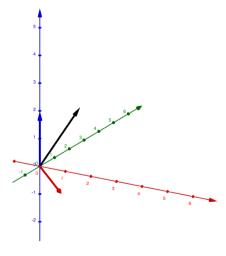


Figura 6.1: Esercizio 6.6.39.

Esercizio 6.6.40. [Per chi conosce già il prodotto vettoriale] Calcolare con la regola del determinante e disegnare nello spazio il prodotto vettoriale dei due seguenti vettori: $\mathbf{v}_1 = (1, 0, -1), \mathbf{v}_2 = (1, 1, 2).$

Soluzione Esercizio: Il prodotto vettoriale tra \mathbf{v}_1 e \mathbf{v}_2 è (1,-3,1). Essi sono rappresentati in Figura 6.2 coi colori nero, blu e rosso rispettivamente.

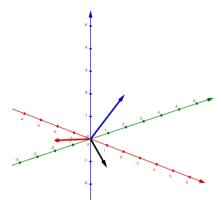


Figura 6.2: Esercizio 6.6.40.